New Computational Methods for Compression and Recovery of Random Vectors

Coloquio de Matemática Aplicada
Escuela de Matemáticas
Instituto Tecnológico de Costa Rica
Juan Pablo Soto Quirós
jusoto@itcr.ac.cr

9-04-2018
(1) Statement of the Problem

3) Our Contribution

4) Conclusions and Future Work
(1) Statement of the Problem

(2) Literature Review

(3) Our Contribution

4 Conclusions and Future Work
(1) Statement of the Problem

(2) Literature Review

(3) Our Contribution

4 Conclusions and Future Work
(1) Statement of the Problem

(2) Literature Review

(3) Our Contribution

4 Conclusions and Future Work
(1) Statement of the Problem
(2) Literature Review
(3) Our Contribution

4 Conclusions and Future Work

Consider the random vectors

- x (source vector)

Consider the random vectors

- x (source vector)
- \mathbf{y} (observed vector)

Consider the random vectors

- x (source vector)
- u (compressed vector)
- \mathbf{y} (observed vector)

$\mathbf{u}=[\square \square]$

Consider the random vectors

- \mathbf{x} (source vector)
- y (observed vector)
- u (compressed vector)
- $\widehat{\mathbf{x}}$ (reconstructed vector)

A Block Diagram Representation

Statement of the Problem

Find optimal new models C and D such that
and improve the accuracy of known methods.

A Block Diagram Representation

Statement of the Problem

Find optimal new models \mathbf{C} and \mathbf{D} such that

$$
\widehat{\mathrm{x}} \approx \mathrm{x}
$$

and improve the accuracy of known methods.

(1) Statement of the Problem

(2) Literature Review

(3) Our Contribution

Special Notation

- $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right), \mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right), \mathbf{u} \in L^{2}\left(\Omega, \mathbb{R}^{r}\right)$ and $\hat{\mathbf{x}} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ random vectors.
- r is the dimension of compressed vector \mathbf{u}, and $r \leqslant \min \{m, n\}$
- Exy represents the covariance matrix of x and y .
- A^{\dagger} denotes the pseudo-inverse of A
- $B^{1 / 2}$ is a square root of B, such that $B=B^{1 / 2} B^{1 / 2}$

Special Notation

- $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right), \mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right), \mathbf{u} \in L^{2}\left(\Omega, \mathbb{R}^{r}\right)$ and $\hat{\mathbf{x}} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ random vectors.
- r is the dimension of compressed vector \mathbf{u}, and $r \leqslant \min \{m, n\}$.
- $E_{x y}$ represents the covariance matrix of x and y .
- A^{\dagger} denotes the pseudo-inverse of A
- $B^{1 / 2}$ is a square root of B, such that $B=B^{1 / 2} B^{1 / 2}$

Special Notation

- $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right), \mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right), \mathbf{u} \in L^{2}\left(\Omega, \mathbb{R}^{r}\right)$ and $\hat{\mathbf{x}} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ random vectors.
- r is the dimension of compressed vector \mathbf{u}, and $r \leqslant \min \{m, n\}$.
- $E_{x y}$ represents the covariance matrix of \mathbf{x} and \mathbf{y}.
- A^{\dagger} denotes the pseudo-inverse of A
- $B^{1 / 2}$ is a square root of B, such that $B=B^{1 / 2} B^{1 / 2}$

Special Notation

- $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right), \mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right), \mathbf{u} \in L^{2}\left(\Omega, \mathbb{R}^{r}\right)$ and $\hat{\mathbf{x}} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ random vectors.
- r is the dimension of compressed vector \mathbf{u}, and $r \leqslant \min \{m, n\}$.
- $E_{x y}$ represents the covariance matrix of \mathbf{x} and \mathbf{y}.
- A^{\dagger} denotes the pseudo-inverse of A.
- $B^{1 / 2}$ is a square root of B, such that $B=B^{1 / 2} B^{1 / 2}$

Special Notation

- $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right), \mathbf{y} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right), \mathbf{u} \in L^{2}\left(\Omega, \mathbb{R}^{r}\right)$ and $\hat{\mathbf{x}} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ random vectors.
- r is the dimension of compressed vector \mathbf{u}, and $r \leqslant \min \{m, n\}$.
- $E_{x y}$ represents the covariance matrix of \mathbf{x} and \mathbf{y}.
- A^{\dagger} denotes the pseudo-inverse of A.
- $B^{1 / 2}$ is a square root of B, such that $B=B^{1 / 2} B^{1 / 2}$.

Transform proposed by Brillinger (BT) [Bri75]

Define the minimization problem

$$
\min _{\substack{D \in \mathbb{R}_{m \times r}^{m \times r} \\ C \in \mathbb{R}^{r \times n}}} \mathbb{E}\left[\|\mathbf{x}-D C \mathbf{y}\|_{2}^{2}\right]
$$

A solution of (1) is the BT and is given by

$$
D^{*}=U_{r} \quad \text { and } \quad C^{*}=U_{r} E_{x y} E_{y y}^{-1}
$$

- Columns of U_{r} are the eigenvectors of first r eigenvalues of $E_{x y} E_{y y}^{-1} E_{y x}$.

(1) $E_{y y}$ is nonsingular

Solution is not unique $(D C=\underbrace{D P} \overparen{P^{-1} C}=\widetilde{D} \widetilde{C})$
Transform proposed by Brillinger (BT) [Bri75]

Define the minimization problem

$$
\min _{\substack{D \in \mathbb{R}^{m \times r} \\ C \in \mathbb{R}^{r \times n}}} \mathbb{E}\left[\|\mathbf{x}-D C \mathbf{y}\|_{2}^{2}\right]
$$

A solution of (1) is the BT and is given by

$$
D^{*}=U_{r} \quad \text { and } \quad C^{*}=U_{r} E_{x y} E_{y y}^{-1}
$$

- Columns of U_{r} are the eigenvectors of first r eigenvalues of $E_{x y} E_{y y}^{-1} E_{y x}$.
(1) $E_{y y}$ is nonsingular.Solution is not unique $(D C=\underbrace{D P} \overparen{P^{-1} C}=\widetilde{D} \widetilde{C})$

Transform proposed by Brillinger (BT) [Bri75]

Define the minimization problem

$$
\min _{\substack{D \in \mathbb{R}^{m \times r} \\ C \in \mathbb{R}^{r \times n}}} \mathbb{E}\left[\|\mathbf{x}-D C \mathbf{y}\|_{2}^{2}\right]
$$

A solution of (1) is the $B T$ and is given by

$$
D^{*}=U_{r} \quad \text { and } \quad C^{*}=U_{r} E_{x y} E_{y y}^{-1}
$$

- Columns of U_{r} are the eigenvectors of first r eigenvalues of $E_{x y} E_{y y}^{-1} E_{y x}$.
(1) $E_{y y}$ is nonsingular.
(i) Solution is not unique $(D C=\underbrace{D P} \overbrace{P^{-1} C}=\widetilde{D} \widetilde{C})$

Generalized Karhunen-Loeve Transform (GKLT) [HL98]

Define the minimization problem

$$
\begin{equation*}
\min _{\substack{F \in \mathbb{R}^{m \times n} \\ \operatorname{rank}(F) \leqslant r}} \mathbb{E}\left[\|\mathbf{x}-F \mathbf{y}\|_{2}^{2}\right], \tag{2}
\end{equation*}
$$

A solution of (2) is the GKLT and is given by

$$
F^{*}=\left[E_{x y} E_{y y}^{1 / 2 \dagger}\right]_{r} E_{y y}^{1 / 2 \dagger}
$$

- $[\bullet]_{r}$ denotes a truncated SVD taken with first r single values.

- Solution is not unique ([TH07])

Generalized Karhunen-Loeve Transform (GKLT) [HL98]

Define the minimization problem

$$
\begin{equation*}
\min _{\substack{F \in \mathbb{R}^{m \times n} \\ \operatorname{rank}(F) \leqslant r}} \mathbb{E}\left[\|\mathbf{x}-F \mathbf{y}\|_{2}^{2}\right], \tag{2}
\end{equation*}
$$

A solution of (2) is the GKLT and is given by

$$
F^{*}=\left[E_{x y} E_{y y}^{1 / 2 \dagger}\right]_{r} E_{y y}^{1 / 2 \dagger}
$$

- $[\bullet]_{r}$ denotes a truncated SVD taken with first r single values.
(1) If $\operatorname{rank}(F) \leqslant r$, then $F=B A$, for some $B \in \mathbb{R}^{m \times r}$ and $A \in \mathbb{R}^{r \times n}$.

Generalized Karhunen-Loeve Transform (GKLT) [HL98]

Define the minimization problem

$$
\begin{equation*}
\min _{\substack{F \in \mathbb{R}^{m \times n} \\ \operatorname{rank}(F) \leqslant r}} \mathbb{E}\left[\|\mathbf{x}-F \mathbf{y}\|_{2}^{2}\right], \tag{2}
\end{equation*}
$$

A solution of (2) is the GKLT and is given by

$$
F^{*}=\left[E_{x y} E_{y y}^{1 / 2 \dagger}\right]_{r} E_{y y}^{1 / 2 \dagger}
$$

- $[\bullet]_{r}$ denotes a truncated SVD taken with first r single values.
(1) If $\operatorname{rank}(F) \leqslant r$, then $F=B A$, for some $B \in \mathbb{R}^{m \times r}$ and $A \in \mathbb{R}^{r \times n}$.
(i) Solution is not unique ([TH07]).

Generalized Karhunen-Loeve Transform (GKLT) [HL98]

Define the minimization problem

$$
\begin{equation*}
\min _{\substack{F \in \mathbb{R}^{m \times n} \\ \operatorname{rank}(F) \leqslant r}} \mathbb{E}\left[\|\mathbf{x}-F \mathbf{y}\|_{2}^{2}\right], \tag{2}
\end{equation*}
$$

A solution of (2) is the GKLT and is given by

$$
F^{*}=\left[E_{x y} E_{y y}^{1 / 2 \dagger}\right]_{r} E_{y y}^{1 / 2 \dagger}
$$

- $[\bullet]_{r}$ denotes a truncated SVD taken with first r single values.
(1) If $\operatorname{rank}(F) \leqslant r$, then $F=B A$, for some $B \in \mathbb{R}^{m \times r}$ and $A \in \mathbb{R}^{r \times n}$.
(i) Solution is not unique ([TH07]).
(1) $F^{*}=D^{*} C^{*}$.
- The BT and GKLT can be represent as

$$
\mathcal{F}_{1}(\mathbf{y})=F \mathbf{y}=D C \mathbf{y}
$$

- We said \mathcal{F}_{1} is a transform of first degree.
- We define a transform of second degree as

$$
\mathcal{F}_{2}(\mathrm{y})=F_{1} \mathrm{y}+F_{2} \mathrm{y}^{2} .
$$

- The BT and GKLT can be represent as

$$
\mathcal{F}_{1}(\mathbf{y})=F \mathbf{y}=D C \mathbf{y} .
$$

- We said \mathcal{F}_{1} is a transform of first degree.
- We define a transform of second degree as
- The BT and GKLT can be represent as

$$
\mathcal{F}_{1}(\mathbf{y})=F \mathbf{y}=D C \mathbf{y} .
$$

- We said \mathcal{F}_{1} is a transform of first degree.
- We define a transform of second degree as

$$
\mathcal{F}_{2}(\mathbf{y})=F_{1} \mathbf{y}+F_{2} \mathbf{y}^{2} .
$$

GKLT of Second Degree (GKLT2) [TH01]

Let's define $\mathcal{F}_{2}(\mathbf{y})=F_{1} \mathbf{y}+F_{2} \mathbf{y}^{2}$ and the problem

$$
\begin{equation*}
\min _{\substack{F_{1}, F_{2} \in \mathbb{R}^{m \times n} \\ \operatorname{rank}\left(\left[F_{1} F_{2}\right]\right) \leqslant r}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{F}_{2}(\mathbf{y})\right\|_{2}^{2}\right], \tag{3}
\end{equation*}
$$

A solution of (3) is the GKLT2 and is given by

$$
\left[F_{1}^{*} F_{2}^{*}\right]=\left[E_{x z} E_{z z}^{1 / 2 \dagger}\right]_{r} E_{z z}^{1 / 2 \dagger}
$$

where $\mathbf{z}=\left[\begin{array}{c}\mathbf{y}_{\mathbf{2}} \\ \mathbf{y}^{2}\end{array}\right] \in L^{2}\left(\Omega, \mathbb{R}^{2 n}\right)$.
(1) The solution is not unique

- Under some conditions, the accuracy of GKLT2 is better than BT and GKLT.
(1) An exact $E_{x y^{2}}$ is difficult to find.

GKLT of Second Degree (GKLT2) [TH01]

Let's define $\mathcal{F}_{2}(\mathbf{y})=F_{1} \mathbf{y}+F_{2} \mathbf{y}^{2}$ and the problem

$$
\begin{equation*}
\min _{\substack{F_{1}, F_{2} \in \mathbb{R}^{m \times n} \\ \operatorname{rank}\left(\left[F_{1} F_{2}\right]\right) \leqslant r}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{F}_{2}(\mathbf{y})\right\|_{2}^{2}\right], \tag{3}
\end{equation*}
$$

A solution of (3) is the GKLT2 and is given by

$$
\left[F_{1}^{*} F_{2}^{*}\right]=\left[E_{x z} E_{z z}^{1 / 2 \dagger}\right]_{r} E_{z z}^{1 / 2 \dagger}
$$

where $\mathbf{z}=\left[\begin{array}{c}\mathbf{y}_{\mathbf{2}} \\ \mathbf{y}^{2}\end{array}\right] \in L^{2}\left(\Omega, \mathbb{R}^{2 n}\right)$.
(1) The solution is not unique.
(1) Under some conditions, the accuracy of GKLT2 is better than BT and GKLT
(1) An exact $E_{x y^{2}}$ is difficult to find

GKLT of Second Degree (GKLT2) [TH01]

Let's define $\mathcal{F}_{2}(\mathbf{y})=F_{1} \mathbf{y}+F_{2} \mathbf{y}^{2}$ and the problem

$$
\begin{equation*}
\min _{\left.\substack{F_{1}, F_{2} \in \mathbb{R}^{m \times n} \\ \operatorname{rank}\left(\left[F_{1} \\ F_{2} \\ \hline\right.\right.}\right) \leqslant r} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{F}_{2}(\mathbf{y})\right\|_{2}^{2}\right], \tag{3}
\end{equation*}
$$

A solution of (3) is the GKLT2 and is given by

$$
\left[F_{1}^{*} F_{2}^{*}\right]=\left[E_{x z} E_{z z}^{1 / 2 \dagger}\right]_{r} E_{z z}^{1 / 2 \dagger}
$$

where $\mathbf{z}=\left[\begin{array}{c}\mathbf{y}^{2} \\ \mathbf{y}^{2}\end{array}\right] \in L^{2}\left(\Omega, \mathbb{R}^{2 n}\right)$.
(1) The solution is not unique.
(1) Under some conditions, the accuracy of GKLT2 is better than BT and GKLT.
(1) An exact $E_{x y^{2}}$ is difficult to find.

GKLT of Second Degree (GKLT2) [TH01]

Let's define $\mathcal{F}_{2}(\mathbf{y})=F_{1} \mathbf{y}+F_{2} \mathbf{y}^{2}$ and the problem

$$
\begin{equation*}
\min _{\substack{F_{1}, F_{2} \in \mathbb{R}^{m \times n} \\ \operatorname{rank}\left(\left[F_{1} F_{2}\right]\right) \leqslant r}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{F}_{2}(\mathbf{y})\right\|_{2}^{2}\right], \tag{3}
\end{equation*}
$$

A solution of (3) is the GKLT2 and is given by

$$
\left[F_{1}^{*} F_{2}^{*}\right]=\left[E_{x z} E_{z z}^{1 / 2 \dagger}\right]_{r} E_{z z}^{1 / 2 \dagger}
$$

where $\mathbf{z}=\left[\begin{array}{c}\mathbf{y}^{2} \\ \mathbf{y}^{2}\end{array}\right] \in L^{2}\left(\Omega, \mathbb{R}^{2 n}\right)$.
(1) The solution is not unique.
(1) Under some conditions, the accuracy of GKLT2 is better than BT and GKLT.
(i) An exact $E_{x y^{2}}$ is difficult to find.

(1) Statement of the Problem

(2) Literature Review
(3) Our Contribution

Consider a transform $\mathcal{T}: L^{2}\left(\Omega, \mathbb{R}^{n}\right) \rightarrow \mathcal{T}: L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ and define the problem $\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right]$.

Our contribution

- Develop new transforms $\mathcal{T}(\mathrm{y})=\widehat{\mathrm{x}}$ such that allow compression, de-compression and filtering of vector y.
- $\widehat{\mathrm{x}} \sim \mathrm{x}$.
- The accuracy of $\mathcal{T}(\mathbf{y})$ will be better that BT, GKLT and GKLT2.

Consider a transform $\mathcal{T}: L^{2}\left(\Omega, \mathbb{R}^{n}\right) \rightarrow \mathcal{T}: L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ and define the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right]
$$

Our contribution

- Develop new transforms $\mathcal{T}(\mathbf{y})=\widehat{\mathbf{x}}$ such that allow compression, de-compression and filtering of vector \mathbf{y}.
- The accuracy of $\mathcal{T}(\mathbf{y})$ will be better that BT, GKLT and GKLT2.

Consider a transform $\mathcal{T}: L^{2}\left(\Omega, \mathbb{R}^{n}\right) \rightarrow \mathcal{T}: L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ and define the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right]
$$

Our contribution

- Develop new transforms $\mathcal{T}(\mathbf{y})=\widehat{\mathbf{x}}$ such that allow compression, de-compression and filtering of vector \mathbf{y}.
- $\widehat{\mathrm{x}} \approx \mathrm{x}$.
- The accuracy of $\mathcal{T}(\mathrm{y})$ will be better that BT, GKLT and GKLT2.

Consider a transform $\mathcal{T}: L^{2}\left(\Omega, \mathbb{R}^{n}\right) \rightarrow \mathcal{T}: L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ and define the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right] .
$$

Our contribution

- Develop new transforms $\mathcal{T}(\mathbf{y})=\hat{\mathbf{x}}$ such that allow compression, de-compression and filtering of vector \mathbf{y}.
- $\widehat{\mathrm{x}} \approx \mathrm{x}$.
- The accuracy of $\mathcal{T}(\mathbf{y})$ will be better that BT, GKLT and GKLT2.

Transform Proposed $1\left(\mathcal{T}_{1}\right)$

Transform \mathcal{T}_{1}

$$
\mathcal{T}_{1}(\mathbf{y})=D_{1} C_{1} \mathbf{y}+D_{2} C_{2} \mathcal{Q}(\mathbf{v}, \mathbf{y})
$$

- $\mathcal{Q}(\mathbf{v}, \mathbf{y})=\mathbf{v}-E_{y v} E_{y y}^{\dagger} \mathbf{y}$.
- $\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{q}\right)$ is arbitrary

Problem with T1
 Let's define $r_{1} \leqslant \min \{m, n\}$ and $r_{2} \leqslant \min \{m, q\}$. Solve

\min
\min
$\mathbb{E}_{\mathbb{E}}\left[\| \mathbf{x}-\left.\mathcal{T}_{1}(\mathbf{y})\right|_{2} ^{2}\right]$.

Transform Proposed $1\left(\mathcal{T}_{1}\right)$

Transform \mathcal{T}_{1}

$$
\mathcal{T}_{1}(\mathbf{y})=D_{1} C_{1} \mathbf{y}+D_{2} C_{2} \mathcal{Q}(\mathbf{v}, \mathbf{y})
$$

- $\mathcal{Q}(\mathbf{v}, \mathbf{y})=\mathbf{v}-E_{y v} E_{y y}^{\dagger} \mathbf{y}$.
- $\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{q}\right)$ is arbitrary

Problem with \mathcal{T}_{1}

Let's define $r_{1} \leqslant \min \{m, n\}$ and $r_{2} \leqslant \min \{m, q\}$. Solve

$$
\min _{\substack{D_{2} \in \mathbb{R}^{m \times r_{2}} \\ C_{2} \in \mathbb{R}^{r_{2} \times q}}} \min _{\substack{D_{1} \in \mathbb{R}^{m \times r_{1}} \\ C_{1} \in \mathbb{R}^{r_{1} \times n}}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{T}_{1}(\mathbf{y})\right\|_{2}^{2}\right] .
$$

\mathcal{T}_{1} : Some results.

(0. The MSE ε of \mathcal{T}_{1} is better than BT and GKLT if

$$
\sum_{i=r_{1}+1}^{r} \lambda_{i}\left(E_{x y} E_{y y}^{\dagger} E_{y x}\right)<\sum_{i=1}^{r_{2}} \lambda_{i}\left(E_{x z} E_{z z}^{\dagger} E_{z x}\right)
$$

where λ_{i} is the i-th eigenvalue and $\mathbf{z}=\mathcal{Q}(\mathbf{v}, \mathbf{y})$.

\mathcal{T}_{1} : Some results.

(1. The MSE ε of \mathcal{T}_{1} is better than BT and GKLT if

$$
\underbrace{\sum_{i=r_{1}+1}^{r} \lambda_{i}\left(E_{x y} E_{y y}^{\dagger} E_{y x}\right)}_{\alpha_{y}}<\underbrace{\sum_{i=1}^{r_{2}} \lambda_{i}\left(E_{x z} E_{z z}^{\dagger} E_{z x}\right)}_{\alpha_{z}}
$$

where λ_{i} is the i-th eigenvalue.

\mathcal{T}_{1} : Some results.

Example 1

Consider $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{20}\right)$ and $\mathbf{y}=\mathbf{x}+\xi$, where ξ is a white noise uncorrelated with x and $E_{\xi \xi}=\sigma^{2} I_{20}$, where $\sigma=1$. Let's define an arbitrary random vector $\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{20}\right)$, such that $E_{x v} \neq \mathbf{0}$.

Figure: Average of 10000 simulations.

\mathcal{T}_{1} : Some results.

(1. For any random vectors \mathbf{x}, \mathbf{y} and \mathbf{v}
$\mathbb{E}\left[\left\|\mathbf{x}-\mathcal{T}_{1}(\mathbf{y})\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|\mathbf{x}-D_{1} C_{1} \mathbf{y}\right\|_{2}^{2}\right]+\mathbb{E}\left[\left\|\mathbf{x}-D_{2} C_{2} \mathcal{Q}(\mathbf{v}, \mathbf{y})\right\|_{2}^{2}\right]-\mathbb{E}\left[\|\mathbf{x}\|_{2}^{2}\right]$.
Therefore, $D_{1} C_{1}$ and $D_{2} C_{2}$ can be computed independently (A computational advantage).

\mathcal{T}_{1} : Some results.

(1. For any random vectors \mathbf{x}, \mathbf{y} and \mathbf{v}

$$
\mathbb{E}\left[\left\|\mathbf{x}-\mathcal{T}_{1}(\mathbf{y})\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|\mathbf{x}-D_{1} C_{1} \mathbf{y}\right\|_{2}^{2}\right]+\mathbb{E}\left[\left\|\mathbf{x}-D_{2} C_{2} \mathcal{Q}(\mathbf{v}, \mathbf{y})\right\|_{2}^{2}\right]-\mathbb{E}\left[\|\mathbf{x}\|_{2}^{2}\right] .
$$

Therefore, $D_{1} C_{1}$ and $D_{2} C_{2}$ can be computed independently (A computational advantage).

\mathcal{T}_{1} : Some results.

Example 2

Consider a two Gaussian vectors $\mathbf{x}, \mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{m}\right)$ and a observation $\mathbf{y}=\mathbf{x}+\xi$, where ξ is other Gaussian vector. To estimate covariance matrices, we use training vectors represented by $X, Y, V \in \mathbb{R}^{m \times 3 m}$.

\mathcal{T}_{1} : Some results.

(a. If $D_{1} C_{1}$ and $D_{2} C_{2}$ are full rank matrices, i.e., \mathcal{T}_{1} is a filter, then the accuracy of \mathcal{T}_{1} is better than or equal to BT $\left(r_{1}=\min \{m, n\}\right.$ and $\left.r_{2}=\min \{m, q\}\right)$.
(1) The optimal D_{2}, C_{2} and v that solve the problem satisfy

[^0]
\mathcal{T}_{1} : Some results.

(a. If $D_{1} C_{1}$ and $D_{2} C_{2}$ are full rank matrices, i.e., \mathcal{T}_{1} is a filter, then the accuracy of \mathcal{T}_{1} is better than or equal to BT $\left(r_{1}=\min \{m, n\}\right.$ and $\left.r_{2}=\min \{m, q\}\right)$.
(1) The optimal D_{2}, C_{2} and \mathbf{v} that solve the problem satisfy

$$
\left\{\begin{array}{l}
D_{2} C_{2}=U_{r_{2}} U_{r_{2}}\left(E_{x v}-E_{x y} E_{y y}^{\dagger} E_{y v}\right)\left(E_{v v}-E_{v y} E_{y y}^{\dagger} E_{y v}\right)^{\dagger} \\
\mathbf{v}=E_{v y} E_{y y}^{\dagger}+\left(D_{2} C_{2}\right)^{\dagger} \mathbf{x}
\end{array}\right.
$$

\mathcal{T}_{1} : Some results.

(a) If $D_{1} C_{1}$ and $D_{2} C_{2}$ are full rank matrices, i.e., \mathcal{T}_{1} is a filter, then the accuracy of \mathcal{T}_{1} is better than or equal to BT $\left(r_{1}=\min \{m, n\}\right.$ and $\left.r_{2}=\min \{m, q\}\right)$.
(1) The optimal D_{2}, C_{2} and \mathbf{v} that solve the problem satisfy

$$
\left\{\begin{array}{l}
D_{2} C_{2}=U_{r_{2}} U_{r_{2}}\left(E_{x v}-E_{x y} E_{y y}^{\dagger} E_{y v}\right)\left(E_{v v}-E_{v y} E_{y y}^{\dagger} E_{y v}\right)^{\dagger} \\
\mathbf{v}=E_{v y} E_{y y}^{\dagger}+\left(D_{2} C_{2}\right)^{\dagger} \mathbf{x}
\end{array}\right.
$$

Remark: Using samples of vectors \mathbf{x}, \mathbf{y} and \mathbf{v}, it is possible to obtain an estimation of optimal \mathbf{v} and D_{2}, C_{2}, through an iterative quadratic minimum distance method.

\mathcal{T}_{1} : Some results.

Example 3

Define: image $X \in \mathbb{R}^{512 \times 256}$, observed data $Y \in \mathbb{R}^{512 \times 256}$ and arbitrary $V \in \mathbb{R}^{512 \times 256}$.

Original Image

Observed Image

\mathcal{T}_{1} : Some results.

Example 3

Filtering of observed data using BT, GKLT2 and $\mathcal{T}_{1}(r=512)$.

Reconstruction using BT

Reconstruction using GKLT2

Reconstruction using \mathcal{T}_{1}

Reconstruction using \mathcal{T}_{1} and an optimized \mathbf{v}

\mathcal{T}_{1} : Some results.

(0. The MSE of \mathcal{T}_{1} decreases as the dimension q of vector \mathbf{v} increase.

\mathcal{T}_{1} : Some results.

Example 4

Consider $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{40}\right)$ and $\mathbf{y}=A \mathbf{x}+\xi$, where ξ is a white noise $E_{\xi \xi}=\sigma^{2} I_{4}$, where $\sigma=1.5$. Let's define an arbitrary random vector $\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{q}\right)$, such that $E_{x v} \neq \mathbf{0}$.

- If $r=20$, then MSE of BT is $\varepsilon_{\mathrm{BT}}=4.9009$.
- If $r_{1}=10$ and $r_{2}=10$ and changing the length q of vector \mathbf{v}, then MSE of \mathcal{T}_{1} is represented in the following plot:

Transform Proposed $2\left(\mathcal{T}_{2}\right)$

Transform \mathcal{T}_{2}

$$
\mathcal{T}_{2}(\mathbf{y})=D C_{1} \mathbf{y}+D C_{2} \mathbf{v}
$$

- $\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{q}\right)$ is arbitrary

Problem with \mathcal{T}_{2}

Solve

Transform Proposed $2\left(\mathcal{T}_{2}\right)$

Transform \mathcal{T}_{2}

$$
\mathcal{T}_{2}(\mathbf{y})=D C_{1} \mathbf{y}+D C_{2} \mathbf{v}
$$

- $\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{q}\right)$ is arbitrary

Problem with \mathcal{T}_{2}
Solve

$$
\min _{\substack{D \in \mathbb{R}^{m \times r} \\ C_{1} \in \mathbb{R}^{r \times n}, C_{2} \in \mathbb{R}^{r \times q}}}
$$

\mathcal{T}_{2} : Some results.

Let's define the random vector $\mathbf{w}=\left[\begin{array}{l}\mathbf{y} \\ \mathbf{v}\end{array}\right]$, and covariance matrix $E_{w w}$. We consider two scenarios:
(1) $\mathbf{S} 1: E_{w w}$ is singular, but $S S^{\dagger} E_{v y}=E_{v y}$, where $S=E_{v v}-E_{v y} E_{y y}^{\dagger} E_{y v}$.
(i) S2: $E_{w w}$ is nonsingular.
(1) If $\mathbf{S} 1$ or $\mathbf{S} 2$ are true, then the accuracy of \mathcal{T}_{2} is better than or equal to BT The GKLT2 is a particular case of $\mathcal{T}_{2}\left(\mathbf{v}=\mathrm{y}^{2}\right)$.

\mathcal{T}_{2} : Some results.

Let's define the random vector $\mathbf{w}=\left[\begin{array}{l}\mathbf{y} \\ \mathbf{v}\end{array}\right]$, and covariance matrix $E_{w w}$. We consider two scenarios:
(1) $\mathbf{S 1}: E_{w w}$ is singular, but $S S^{\dagger} E_{v y}=E_{v y}$, where $S=E_{v v}-E_{v y} E_{y y}^{\dagger} E_{y v}$.
(i) S2: $E_{w w}$ is nonsingular.
(1) If $\mathbf{S} 1$ or $\mathbf{S} 2$ are true, then the accuracy of \mathcal{T}_{2} is better than or equal to BT.

$$
\text { The GKLT2 is a particular case of } \mathcal{T}_{2}\left(\mathrm{v}=\mathrm{y}^{2}\right) \text {. }
$$

\mathcal{T}_{2} : Some results.

Let's define the random vector $\mathbf{w}=\left[\begin{array}{l}\mathbf{y} \\ \mathbf{v}\end{array}\right]$, and covariance matrix $E_{w w}$. We consider two scenarios:
(1) $\mathbf{S 1}: E_{w w}$ is singular, but $S S^{\dagger} E_{v y}=E_{v y}$, where $S=E_{v v}-E_{v y} E_{y y}^{\dagger} E_{y v}$.
(i) S2: $E_{w w}$ is nonsingular.
(a) If $\mathbf{S} 1$ or $\mathbf{S} 2$ are true, then the accuracy of \mathcal{T}_{2} is better than or equal to BT. The GKLT2 is a particular case of $\mathcal{T}_{2}\left(\mathbf{v}=\mathbf{y}^{2}\right)$.

\mathcal{T}_{2} : Some results.

Example 5

Consider $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{200}\right)$ and $\mathbf{y}=\mathbf{x}+\xi$, where ξ is a white noise and $E_{\xi \xi}=\sigma^{2} I_{200}$, where $\sigma=0.5$. Let's define an arbitrary random vector $\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{200}\right)$, where $E_{x v} \neq \mathbf{0}$.

Figure: Average of 10000 simulations.

\mathcal{T}_{2} : Some results.

(0. The optimal D, C_{1}, C_{2} and \mathbf{v} that solve the problem satisfy

$$
\left\{\begin{array}{l}
D C_{1}+D C_{2}=U_{r_{2}} U_{r_{2}}\left[E_{x y} E_{x v}\right]\left[\begin{array}{ll}
E_{y y} & E_{y v} \\
E_{v y} & E_{v v}
\end{array}\right]^{\dagger} \\
\mathbf{v}=\left(D C_{2}\right)^{\dagger}\left(\mathbf{x}-D C_{1} \mathbf{y}\right)
\end{array}\right.
$$

Remark: Using samples of vectors x, y and v , it is possible to obtain an estimation of optimal \mathbf{v} and D, C_{1} and C_{2}, through an iterative quadratic minimum distance method.

\mathcal{T}_{2} : Some results.

© The optimal D, C_{1}, C_{2} and \mathbf{v} that solve the problem satisfy

$$
\left\{\begin{array}{l}
D C_{1}+D C_{2}=U_{r_{2}} U_{r_{2}}\left[\begin{array}{ll}
E_{x y} & E_{x v}
\end{array}\right]\left[\begin{array}{ll}
E_{y y} & E_{y v} \\
E_{v y} & E_{v v}
\end{array}\right]^{\dagger} \\
\mathbf{v}=\left(D C_{2}\right)^{\dagger}\left(\mathbf{x}-D C_{1} \mathbf{y}\right)
\end{array}\right.
$$

Remark: Using samples of vectors \mathbf{x}, \mathbf{y} and \mathbf{v}, it is possible to obtain an estimation of optimal \mathbf{v} and D, C_{1} and C_{2}, through an iterative quadratic minimum distance method.

\mathcal{T}_{2} : Some results.

Example 6

Define: image $X \in \mathbb{R}^{256 \times 512}$, observed data $Y \in \mathbb{R}^{256 \times 512}$ and arbitrary $V \in \mathbb{R}^{256 \times 512}$.

Original Image

Observed Image

\mathcal{T}_{2} : Some results.

Example 6

Reconstruction of observed data using $\mathrm{BT}, \mathcal{T}_{1}$ and \mathcal{T}_{2} as when $r=128$.

Reconstruction using \mathcal{T}_{2}

Reconstruction using \mathcal{T}_{1}

Reconstruction using \mathcal{T}_{2} and an optimized \mathbf{v}

\mathcal{T}_{2} : Some results.

© The error associated ε decreases as the dimension q of vector \mathbf{v} increase.

\mathcal{T}_{2} : Some results.

Example 7

Consider $\mathbf{x} \in L^{2}\left(\Omega, \mathbb{R}^{40}\right)$ and $\mathbf{y}=A \mathbf{x}+\xi$, where ξ is a white noise $E_{\xi \xi}=\sigma^{2} I_{4}$, where $\sigma=1.5$. Let's define an arbitrary random vector $\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{q}\right)$, such that $E_{x v} \neq \mathbf{0}$.

- If $r=20$, then MSE of BT is $\varepsilon_{B T}=4.9009$.
- If $r_{1}=10, r_{2}=10, r=20$ and changing the length q of vector \mathbf{v}, then MSE of \mathcal{T}_{1} and \mathcal{T}_{2} are represented in the following plot:

Transform Proposed $3\left(\mathcal{T}_{3}^{(k)}\right)$

Transform $\mathcal{T}_{3}^{(k)}$

$$
\mathcal{T}_{3}^{(k)}(\mathbf{y})=\left(\mathcal{P}^{(k)} \circ \mathcal{T}\right)(\mathbf{y})
$$

- \mathcal{T} is the BT or \mathcal{T}_{2}.
- $\mathcal{P}^{(k)}=\mathcal{P}_{k} \circ \cdots \circ \mathcal{P}_{1}$.
- Each \mathcal{P}_{i} is filter.

Proble Solve

Transform Proposed $3\left(\mathcal{T}_{3}^{(k)}\right)$

Transform $\mathcal{T}_{3}^{(k)}$

$$
\mathcal{T}_{3}^{(k)}(\mathbf{y})=\left(\mathcal{P}^{(k)} \circ \mathcal{T}\right)(\mathbf{y})
$$

- \mathcal{T} is the BT or \mathcal{T}_{2}.
- $\mathcal{P}^{(k)}=\mathcal{P}_{k} \circ \cdots \circ \mathcal{P}_{1}$.
- Each \mathcal{P}_{i} is filter.

Problem with $\mathcal{T}_{3}^{(k)}$
Solve

$$
\min _{\mathcal{T}, \mathcal{P}_{1}, \ldots, \mathcal{P}_{k}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{T}_{3}^{(k)}(\mathbf{y})\right\|_{2}^{2}\right]
$$

$\mathcal{T}_{3}^{(k)}:$ Some results.

Transform $\mathcal{T}_{3}^{(k)}$

$$
\begin{aligned}
\mathcal{T}_{3}^{(k)}(\mathbf{y}) & =\left(\mathcal{P}^{(k)} \circ \mathcal{T}\right)(\mathbf{y}) \\
& =\left(\mathcal{P}_{k} \circ \cdots \circ \mathcal{P}_{1} \circ \mathcal{T}\right)(\mathbf{y})
\end{aligned}
$$

(1) Each $\mathcal{P}_{i}(\mathbf{y})$ need to be a second degree transform, i.e.,

$$
\mathcal{P}_{i}(\mathbf{y})=F_{1, i} \mathbf{y}+F_{2, i} \mathbf{v}_{i}
$$

because, if each \mathcal{P}_{i} is a linear transform, i.e.,

$$
\mathcal{P}_{i}(\mathbf{y})=F_{i} \mathbf{y}
$$

then the accuracy of $\mathcal{T}_{3}^{(k)}$ never will be better than \mathcal{T}.

$\mathcal{T}_{3}^{(k)}:$ Some results.

Scheme of solution of $\mathcal{T}_{3}^{(k)}(\mathrm{y})=\left(\mathcal{P}_{k} \circ \cdots \circ \mathcal{P}_{1} \circ \mathcal{T}\right)(\mathrm{y})$
(1) Compute compressor and de-compresor from the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right] .
$$

(1) Define $\mathbf{t}_{0}=\mathcal{T}(\mathbf{y})$ and compute \mathcal{P}_{1} from

(1) Define $\mathbf{t}_{i}=\left(\mathcal{P}_{i} \circ \cdots \circ \mathcal{P}_{1} \circ \mathcal{T}\right)(\mathbf{y})$ and compute \mathcal{P}_{i+1} from

$$
\frac{\min }{\mathcal{P i n}_{1+1}}\left\|\left\|_{x}-\mathcal{P}_{i+1}\left(t_{i}\right)\right\|_{27}^{27}\right.
$$

$\mathcal{T}_{3}^{(k)}:$ Some results.

Scheme of solution of $\mathcal{T}_{3}^{(k)}(\mathrm{y})=\left(\mathcal{P}_{k} \circ \cdots \circ \mathcal{P}_{1} \circ \mathcal{T}\right)(\mathrm{y})$
(T) Compute compressor and de-compresor from the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right] .
$$

(1) Define $\mathbf{t}_{0}=\mathcal{T}(\mathbf{y})$ and compute \mathcal{P}_{1} from

$$
\min _{\mathcal{P}_{1}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{P}_{1}\left(\mathbf{t}_{1}\right)\right\|_{2}^{2}\right] .
$$

(1) Define $\mathbf{t}_{i}=\left(\mathcal{P}_{i} \circ \cdots \circ \mathcal{P}_{1} \circ \mathcal{T}\right)(\mathbf{y})$ and compute \mathcal{P}_{i+1} from

$$
\frac{\min }{\mathcal{P i n}_{1+1}}\left\|\left\|_{x}-\mathcal{P}_{i+1}\left(t_{1}\right)\right\|_{27}^{27}\right.
$$

$\mathcal{T}_{3}^{(k)}:$ Some results.

Scheme of solution of $\mathcal{T}_{3}^{(k)}(\mathrm{y})=\left(\mathcal{P}_{k} \circ \cdots \circ \mathcal{P}_{1} \circ \mathcal{T}\right)(\mathrm{y})$
(1) Compute compressor and de-compresor from the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right] .
$$

(3) Define $\mathbf{t}_{0}=\mathcal{T}(\mathbf{y})$ and compute \mathcal{P}_{1} from

$$
\min _{\mathcal{P}_{1}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{P}_{1}\left(\mathbf{t}_{1}\right)\right\|_{2}^{2}\right] .
$$

(3) Define $\mathbf{t}_{i}=\left(\mathcal{P}_{i} \circ \cdots \circ \mathcal{P}_{1} \circ \mathcal{T}\right)(\mathbf{y})$ and compute \mathcal{P}_{i+1} from

$$
\min _{\mathcal{P}_{i+1}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{P}_{i+1}\left(\mathbf{t}_{i}\right)\right\|_{2}^{2}\right],
$$

for $i=1, \ldots, k-1$.
$\mathcal{T}_{3}^{(k)}:$ Some results.
(0. The MSE of transform $\mathcal{T}_{3}^{(k)}$ is less than transform \mathcal{T}, for all $k \geqslant 1$.
(1) If $k>j$, then the accuracy of transform $\mathcal{T}_{3}^{(k)}$ is better than transform $\mathcal{T}_{3}^{(j)}$
(0. The MSE of transform $\mathcal{T}_{3}^{(k)}$ is less than transform \mathcal{T}, for all $k \geqslant 1$.
(1. If $k>j$, then the accuracy of transform $\mathcal{T}_{3}^{(k)}$ is better than transform $\mathcal{T}_{3}^{(j)}$.
$\mathcal{T}_{3}^{(k)}$: Some results.

Example 8 (Face reconstruction)

We consider a training set $\left\{\mathbf{x}^{(k)}, \mathbf{y}^{(k)}\right\}_{k=0}^{1520}$ consisted of 1521 faces images.

- $\mathbf{x}^{(k)} \in \mathbb{R}^{109824}$ were obtained using BiolD Face Database [Bio] consists of a set $\left\{X^{(k)}\right\}_{k=1}^{1520}$ of grayscale images of 23 different persons, $X^{(k)} \in \mathbb{R}^{286 \times 384}$, where

$$
\mathbf{x}^{(k)}=\operatorname{vec}\left(X^{(k)}\right)
$$

- To generate the corresponding noisy $\mathbf{y}^{(k)} \in \mathbb{R}^{109824}$ (blurred image), we use MATLAB command imfilter to create a blurred image $Y^{(k)}$. Finally,

$$
\mathbf{y}^{(k)}=\operatorname{vec}\left(Y^{(k)}\right)
$$

$\mathcal{T}_{3}^{(k)}$: Some results.

Example 8 (Face reconstruction)

$$
\begin{aligned}
& \text { 以 }
\end{aligned}
$$

(a) Source images.

(b) Blurred images.

$\mathcal{T}_{3}^{(k)}:$ Some results.

Example 8 (Face reconstruction)
Reconstruction of \tilde{Y}, using $r=30, \mathcal{T}=\mathcal{T}_{2}$ and $\mathcal{P}_{i}=F_{1, i} \mathbf{y}+F_{2, i} \mathbf{y}^{2}$.

(1) Statement of the Problem

2 Literature Review
(3) Our Contribution

4 Conclusions and Future Work

Conclusions

(木3 We propose new transforms to solve the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right]
$$

(1) The new transforms allow compression, de-compression and filtering of vector y
(1) The proposed transforms improve the accuracy of known methods, i.e., BT, GKLT and GKLT2.

Conclusions

(13 We propose new transforms to solve the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right]
$$

(13) The new transforms allow compression, de-compression and filtering of vector \mathbf{y}.
(18) The proposed transforms improve the accuracy of known methods, i.e., BT, GKLT and GKLT2

Conclusions

(13 We propose new transforms to solve the problem

$$
\min _{\mathcal{T}} \mathbb{E}\left[\|\mathbf{x}-\mathcal{T}(\mathbf{y})\|_{2}^{2}\right]
$$

(13) The new transforms allow compression, de-compression and filtering of vector \mathbf{y}.
(13) The proposed transforms improve the accuracy of known methods, i.e., BT, GKLT and GKLT2.

Conclusions

(18) The improvement in accuracy is achieved by special structures of the proposed transforms which contain more parameters to optimize compared to the known transforms.

Table: Matrices and parameters to optimize for each transform.

Transforms	Matrices to optimize	Number of parameters to optimize
BT	D, C	$r(m+n)$
GKLT	F	$m n$
GKLT2	F_{1}, F_{2}	$2 m n$
\mathcal{T}_{1}	$D_{1}, C_{1}, D_{2}, C_{2}$	$r_{1}(m+n)+r_{2}(m+q)$
\mathcal{T}_{2}	D, C_{1}, C_{2}	$r(m+n+q)$
$\mathcal{T}_{3}^{(k)}\left(^{*}\right)$	D, C,	$r(m+n)+m\left(m k+\sum_{i=1}^{k} q_{i}\right)$
$\mathcal{T}_{3}^{(k)}{ }^{(* *)}$	$F_{1,1}, F_{2,1}, \ldots, F_{1, k}, F_{2, k}$	D, C_{1}, C_{2},
	$F_{1,1}, F_{2,1}, \ldots, F_{1, k}, F_{2, k}$	$r(m+n+q)+m\left(m k+\sum_{i=1}^{k} q_{i}\right)$

Conclusions

(13) The improvement in accuracy is achieved by special structures of the proposed transforms which contain more parameters to optimize compared to the known transforms.

Table: Matrices and parameters to optimize for each transform.

Transforms	Matrices to optimize	Number of parameters to optimize
BT	D, C	$r(m+n)$
GKLT	F	$m n$
GKLT2	F_{1}, F_{2}	$2 m n$
\mathcal{T}_{1}	$D_{1}, C_{1}, D_{2}, C_{2}$	$r_{1}(m+n)+r_{2}(m+q)$
\mathcal{T}_{2}	D, C_{1}, C_{2}	$r(m+n+q)$
$\mathcal{T}_{3}^{(k)}\left(^{*}\right)$	D, C,	$r(m+n)+m\left(m k+\sum_{i=1}^{k} q_{i}\right)$
$\mathcal{T}_{3}^{(k)}{ }^{(* *)}$	$F_{1,1}, F_{2,1}, \ldots, F_{1, k}, F_{2, k}$	D, C_{1}, C_{2},
	$F_{1,1}, F_{2,1}, \ldots, F_{1, k}, F_{2, k}$	$r(m+n+q)+m\left(m k+\sum_{i=1}^{k} q_{i}\right)$

$\left({ }^{*}\right) \mathcal{T}=\mathrm{BT} \quad\left({ }^{* *}\right) \mathcal{T}=\mathcal{T}_{2}$.

Future Work

C Develop a method to find an optimal random vector \mathbf{v} in \mathcal{T}_{1} and in \mathcal{T}_{2} :

$$
\min _{\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{q}\right)} \min _{\substack{D_{2} \in \mathbb{R}^{m \times r_{2}} \\ C_{2} \in \mathbb{R}^{r_{2} \times q}}} \min _{\substack{D_{1} \in \mathbb{R}^{m \times r_{1}} \\ C_{1} \in \mathbb{R}^{r_{1} \times n}}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{T}_{1}(\mathbf{y})\right\|_{2}^{2}\right] . .
$$

(0) In transforms \mathcal{T}_{1} and \mathcal{T}_{2}, what happen when dimension q of vector \mathbf{v} takes to infinity?

Future Work

(c) Develop a method to find an optimal random vector \mathbf{v} in \mathcal{T}_{1} and in \mathcal{T}_{2} :

$$
\min _{\mathbf{v} \in L^{2}\left(\Omega, \mathbb{R}^{q}\right)} \min _{\substack{D_{2} \in \mathbb{R}^{m \times r_{2}} \\ C_{2} \in \mathbb{R}^{r_{2} \times q}}} \min _{\substack{D_{1} \in \mathbb{R}^{m \times r_{1}} \\ C_{1} \in \mathbb{R}^{r_{1} \times n}}} \mathbb{E}\left[\left\|\mathbf{x}-\mathcal{T}_{1}(\mathbf{y})\right\|_{2}^{2}\right] . .
$$

(1) In transforms \mathcal{T}_{1} and \mathcal{T}_{2}, what happen when dimension q of vector \mathbf{v} takes to infinity?

Future Work

© Use the proposed transforms in a distributed system scenario.

Publications

- A. Torokhti and P. Soto-Quiros, "Generalized Brillinger-Like Transforms," in IEEE Signal Processing Letters, vol. 23, no. 6, pp. 843-847, June 2016.
- A. Torokthi, S. Miklavcic and P. Soto-Quiros, "Distributed Systems: Identification, Optimization and Simulations", in International Journal of Electronics and Electrical Engineering, vol. 4, no. 4, pp. 322-327, 2016.
- A. Torokhti and P. Soto-Quiros, "Optimal Transforms of Random Vectors: the Case of Successive Optimizations" (Submitted)

References I

[Bio] BiolD-Company.
Bioid face database.
[Bri75] D. Brillinger.
Time Series: Data Analysis and Theory.
Holt Rinehart, 1975.
[HL98] Y. Hua and Wanquan Liu.
Generalized Karhunen-Loeve transform.
IEEE Signal Processing Letters, 5(6):141-142, June 1998.
[TH01] A. Torokhti and P. Howlett.
Optimal fixed rank transform of the second degree.
IEEE Trans. CAS. Part II, Analog and Digital Signal Processing, 48(3):309 - 315, 2001.

References II

[TH07] A. Torokhti and P. Howlett.
Computational Methods for Modelling of Nonlinear Systems. Elsevier, 2007.

[^0]: Remark: Using samples of vectors \mathbf{x}, \mathbf{y} and \mathbf{v}, it is possible to obtain an estimation of optimal \mathbf{v} and D_{2}, C_{2}, through an iterative quadratic minimum distance method

