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Consider the random vectors
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Statement of the Problem

Consider the random vectors

o x (source vector) @ u (compressed vector)
o y (observed vector) @ X (reconstructed vector)
X = [N e (]
Observation

y = [T W e T

Compression (C)

= ]

Reconstruction (D)

X = [T T W]

ITCR Presentacién



Statement of the Problem

A Block Diagram Representation

X: y—)C—u—)D—)ﬁ

Compression De-compression
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Statement of the Problem

A Block Diagram Representation

X: y> C fu> D ——>X

Compression De-compression

Statement of the Problem

Find optimal new models C and D such that
X~ x

and improve the accuracy of known methods.
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Special Notation

o xe L?(Q,R™), y e L*(Q,R"), ue L*(Q,R") and X € L?(Q,R™) random
vectors.
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o xe L?(Q,R™), y e L*(Q,R"), ue L*(Q,R") and X € L?(Q,R™) random
vectors.

o 7 is the dimension of compressed vector u, and 7 < min{m, n}.

Ey represents the covariance matrix of x and y.

o AT denotes the pseudo-inverse of A.
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Literature Review

Special Notation

o xe L?(Q,R™), y e L*(Q,R"), ue L*(Q,R") and X € L?(Q,R™) random
vectors.

o 7 is the dimension of compressed vector u, and 7 < min{m, n}.
o FE,y represents the covariance matrix of x and y.
o AT denotes the pseudo-inverse of A.

o BY?isa square root of B, such that B = BY2pl/2,
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Literature Review

Transform proposed by Brillinger (BT) [Bri75]

Define the minimization problem

q 2
min E[|x — DCy|2], (1)
DGRmX’V‘
CERTX’IL

A solution of (1) is the BT and is given by

D*=U, and C* =UrEzyEyy.

o Columns of U, are the eigenvectors of first r eigenvalues of EzyE;ylny.
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Transform proposed by Brillinger (BT) [Bri75]

Define the minimization problem

q 2
min E[|x — DCy|2], (1)
DGRmX’V‘
CERTX’IL

A solution of (1) is the BT and is given by

D*=U, and C* =UrEzyEyy.

o Columns of U, are the eigenvectors of first r eigenvalues of EzyE;ylny.

@ FEyy is nonsingular.
—N

® Solution is not unique (DC' = DP P~ 'C = DC)
——
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Literature Review

Generalized Karhunen-Loeve Transform (GKLT) [HL98]

Define the minimization problem

q 2
min - Ef[x — Fy|z], (2)
FeRan
rank(F)<r

A solution of (2) is the GKLT and is given by

F* = [Eay By By

o [e]; denotes a truncated SVD taken with first r single values.
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Define the minimization problem

q 2
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FeRan
rank(F)<r

A solution of (2) is the GKLT and is given by

F* = [Eay By By

o [e]; denotes a truncated SVD taken with first r single values.

@ Ifrank(F) < r, then F = BA, for some Be R™*" and A € R"™*",

@ Solution is not unique ([THO7]).

ITCR Presentacién



Literature Review

Generalized Karhunen-Loeve Transform (GKLT) [HL98]

Define the minimization problem

q 2
min - Ef[x — Fy|z], (2)
FeRan
rank(F)<r

A solution of (2) is the GKLT and is given by

F* = [Eay By By

o [e]; denotes a truncated SVD taken with first r single values.

@ Ifrank(F) < r, then F = BA, for some Be R™*" and A € R"™*",

@ Solution is not unique ([THO7]). @® F*=D*C*.
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Literature Review

@ The BT and GKLT can be represent as

Fi(y) = Fy = DCy.
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@ The BT and GKLT can be represent as

Fi(y) = Fy = DCy.

o We said F7 is a transform of first degree.

o We define a transform of second degree as

Faoly) = Fry + Fay”.
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Literature Review

GKLT of Second Degree (GKLT2) [THO01]
Let's define Fo(y) = F1y + Fby? and the problem

min  E[|x — Fa(y)|2], (3)
Fl,FQGRmxn
rank([Fy Fz])<r

A solution of (3) is the GKLT2 and is given by

[Ff F§] = [Eo: BT, BT,

where z = [;’2] e L?(Q,R?™).
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GKLT of Second Degree (GKLT2) [THO01]
Let's define Fo(y) = F1y + Fby? and the problem

min  E[|x — Fa(y)|2], (3)
Fl,FQGRmxn
rank([Fy Fz])<r

A solution of (3) is the GKLT2 and is given by

[Ff F§] = [Eo: BT, BT,

where z = [;’2] e L?(Q,R?™).

@ The solution is not unique.
@ Under some conditions, the accuracy of GKLT2 is better than BT and GKLT.

@ An exact Eg,» is difficult to find.
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Our Contribution

Consider a transform 7 : L%(Q,R"™) — T : L*(2,R™) and define the problem

: 2
min Ef|x — 7 (y)lz2]-
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Consider a transform 7 : L%(Q,R"™) — T : L*(2,R™) and define the problem

. 2
min Ef|x — 7 (y)lz2]-

Our contribution

o Develop new transforms 7 (y) = X such that allow compression, de-compression
and filtering of vector y.
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Consider a transform 7 : L%(Q,R"™) — T : L*(2,R™) and define the problem

. 2
min Ef|x — 7 (y)lz2]-

Our contribution

o Develop new transforms 7 (y) = X such that allow compression, de-compression

and filtering of vector y.

0 X~ X.
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Our Contribution

Consider a transform 7 : L%(Q,R"™) — T : L*(2,R™) and define the problem

. 2
min Ef|x — 7 (y)lz2]-

Our contribution

o Develop new transforms 7 (y) = X such that allow compression, de-compression
and filtering of vector y.

~ X.

D

@ The accuracy of 7T (y) will be better that BT, GKLT and GKLT2.
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Our Contribution

Transform Proposed 1 (77)

e O(v,y)=v— Eva;Eyy.

Ti(y) = D1C1y + D2C2Q(v,y)

o ve L2, RY) is arbitrary

C, v D,

)

x> (vi)y 2

Compression  De-compression

C, == D

2
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Transform Proposed 1 (77)

e O(v,y)=v— Eva;Eyy.

Ti(y) = D1C1y + D2C2Q(v,y)

o ve L2, RY) is arbitrary

C, v D,

)

x> (vi)y 2

Compression  De-compression

C, == D

2

Problem with 77

Let's define r; < min{m,n} and r2 < min{m, ¢}. Solve

. . 2
min min E[HX - Tl(Y)HQ]
DZE]Rmxrg DleRmxrl
C2eR™2*9 CpeR™ X"

ITCR Presentacién



Our Contribution

T1: Some results.

@ The MSE ¢ of 77 is better than BT and GKLT if

T2

Z /\ E;m/Enyy;p Z szEzzEZQJ)
i=r1+1 =1

where )\; is the i-th eigenvalue and z = Q(v,y).

ITCR Presentacién



Our Contribution

T1: Some results.

@ The MSE ¢ of 77 is better than BT and GKLT if

T T2
3 Ni(Bay By Eya) < 2 (Ez-El.Ezz)
i=r1+1 i=1
Qy Qz

where A; is the i-th eigenvalue.
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Our Contribution

T1: Some results.

Consider x € LQ(Q,RQO) and y = x + &£, where £ is a white noise uncorrelated with =
and E¢e = 02120, where o0 = 1. Let's define an arbitrary random vector

v e L(Q,R?%), such that Ez, # 0.

45

MSE

I S
¥

<«

2 4 6 8 10 12 14 16 18 20

r
(r1=ry=r/2)

ay, a.

15

05

Compare a,, and o,

Qy—pn

r
(r1=ry=r/2)

Figure: Average of 10 000 simulations.
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Our Contribution

T1: Some results.

@ For any random vectors x,y and v

Eflx — Ti()[3] = E[|x — D1C1y 3] + E[|x — D2C2Q(v, y)[3] — E[|x[3]-
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Our Contribution

T1: Some results.

@ For any random vectors x,y and v
Eflx — Ti()[3] = E[|x — D1C1y 3] + E[|x — D2C2Q(v, y)[3] — E[|x[3]-

Therefore, D1C and D2Cs can be computed independently (A
computational advantage).
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Our Contribution

Some results.

Consider a two Gaussian vectors x, v € L?(€2, R™) and a observation y = x + &, where

& is other Gaussian vector. To estimate covariance matrices, we use training vectors
represented by X, Y,V € R™*3m

100

80 [

40 -

Time (sec)

20

0 . I I I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Dimension (m)
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Our Contribution

T1: Some results.

@ If D1Cy and DoC5 are full rank matrices, i.e., 71 is a filter, then the accuracy
of 71 is better than or equal to BT (r1 = min{m,n} and r2 = min{m, ¢}).
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T1: Some results.

@ If D1Cy and DoC5 are full rank matrices, i.e., 71 is a filter, then the accuracy
of 71 is better than or equal to BT (r1 = min{m,n} and r2 = min{m, ¢}).

@ The optimal D2, Cy and v that solve the problem satisfy

DQCQ = U7'2 UT‘2 (va - EIyE;yEyv)(EUU — EUyEZyEyU)T
v = EwyE}y + (D2C2)'x
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Our Contribution

T1: Some results.

@ If D1Cy and DoC5 are full rank matrices, i.e., 71 is a filter, then the accuracy
of 71 is better than or equal to BT (r1 = min{m,n} and r2 = min{m, ¢}).

@ The optimal D2, Cy and v that solve the problem satisfy
DoCy = UpyUry (Exv — ExyEly Eyo)(Boy — Buy By Eyo)'
202 T2 72( v zyLyy yv)( VU vy Lyy yv)
v = EwyE}y + (D2C2)'x

Remark: Using samples of vectors X, y and v, it is possible to obtain an
estimation of optimal v and Ds, Cg, through an iterative quadratic minimum
distance method.

ITCR Presentacién



Our Contribution

Some results.

Define: image X € R?!12%256 ohserved data Y € R%12%256 and arbitrary V e R512%256,

Original Image Observed Image
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Our Contribution

Ti: Some results.

Filtering of observed data using BT, GKLT2 and 77 (r = 512).

Reconstruction using BT g Reconstruction using 7, Reconstruction using 7 and an optimized v

50 100 150 200 E » 2 5 150
56.0929
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Our Contribution

T1: Some results.

@ The MSE of 71 decreases as the dimension ¢ of vector v increase.
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Our Contribution

T1: Some results.

Example 4

Consider x € LZ(Q,]R40) and y = Ax + &, where £ is a white noise E¢e = o214, where
o = 1.5. Let's define an arbitrary random vector v € L?(Q2, R?), such that Eg, # 0.

o If r =20, then MSE of BT is eg1 = 4.9009.

o If r1 = 10 and r2 = 10 and changing the length ¢ of vector v, then MSE of 77 is
represented in the following plot:

0 50 100 150 200 250 300 350 400

Dimension (q)
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Our Contribution

Transform Proposed 2 (73)

T2(y) = DCry + DCav

o ve L%(Q,RY) is arbitrary

G,

Compression De-compression

u> D> X

ITCR
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Our Contribution

Transform Proposed 2 (73)

o ve L%(Q,RY) is arbitrary

T2(y) = DCry + DCav

C
X}’I - u> D> X
Yre

Compression De-compression

Problem with 75

Solve . 2
min E[”X— 75(3’)”2]
DeR™*"
CleRrxn7CQERT‘><q
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Our Contribution

T>: Some results.

Let's define the random vector w = [¥], and covariance matrix Eyw. We consider two
scenarios:

@ S1: Eyy is singular, but SSTEy, = Eyy, where S = Eyy — EUyE;SyEyU.

@® S2: Eww is nonsingular.
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T>: Some results.

Let's define the random vector w = [¥], and covariance matrix Eyw. We consider two
scenarios:

@ S1: Eyy is singular, but SSTEy, = Eyy, where S = Eyy — EUyE;SyEyU.

@® S2: Eww is nonsingular.

@ If S1 or S2 are true, then the accuracy of 73 is better than or equal to BT.
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Our Contribution

T>: Some results.

Let's define the random vector w = [¥], and covariance matrix Eyw. We consider two
scenarios:

@ S1: Eyy is singular, but SSTEy, = Eyy, where S = Eyy — EUyE;SyEyU.

@® S2: Eww is nonsingular.

@ If S1 or S2 are true, then the accuracy of 73 is better than or equal to BT.
The GKLT2 is a particular case of 75 (v = y2).
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Our Contribution

T>: Some results.

Consider x € LQ(Q,R%O) and y = x + &, where £ is a white noise and E¢e = 21500,
where o = 0.5. Let’s define an arbitrary random vector v € L%(€2, R2%9), where

FEzy # 0.

T
100 120 140 160 180 200

0 20 40 60 80
p
(ri=re=r/2)

Figure: Average of 10 000 simulations.
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Our Contribution

T>: Some results.

@ The optimal D,C1,C2 and v that solve the problem satisfy
f
E E
DC1 + DCs = Ur,Ur, [Exy Emv] [ vy ve ]
Evy Eyy

v = (DCy)'(x — DC1y)
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Our Contribution

T>: Some results.

@ The optimal D,C1,C2 and v that solve the problem satisfy

Eyy Eyv f
DC1 + DCo = UryUry [Ezy Exv] [ E E ]
vy Vv

v = (DCs)Y(x — DC1y)

Remark: Using samples of vectors x, y and v, it is possible to obtain an
estimation of optimal v and D, C; and Cs, through an iterative quadratic
minimum distance method.
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Our Contribution

: Some results.

Example 6

R256X512 R256X512 R256X512

Define: image X € , observed data Y € and arbitrary V' €

Original Image
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Our Contribution

: Some results.

Example 6

Reconstruction of observed data using BT, 71and 73 as when r = 128.

Reconstruction using BT Reconstruction using 7;

50 100 150 250 300 350 400 450 500

200
MSE: 37.393

Reconstruction using 75

5 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
MSE: 36.2273 MSE: 1.2857¢-08
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Our Contribution

: Some results.

@ The error associated ¢ decreases as the dimension ¢ of vector v increase.
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Our Contribution

T>: Some results.

Example 7

Consider x € LZ(Q,]R40) and y = Ax + &, where £ is a white noise E¢e = o214, where
o = 1.5. Let's define an arbitrary random vector v € L?(Q2, R?), such that Eg, # 0.

o If r =20, then MSE of BT is eg1 = 4.9009.

o If r; =10, r2 = 10, » = 20 and changing the length g of vector v, then MSE of
71 and T2 are represented in the following plot:

2 Il Il Il
0 50 100 150 200 250 300 350 400

Dimension (q)
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Our Contribution

Transform Proposed 3 (7;“)

o T is the BT or 7Ta.

o P = Pyo-. 0Py

o Each P; is filter.

Ppk)
> Pl R Pk

Y
)

Compression
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Our Contribution

Transform Proposed 3 (7;“)

e 7 isthe BT or 75.

° p(k)zpko---opl.

o Each P; is filter.

T Ppk)

Compression

Y
)

Problem with 7,

Solve

_ k 2
- Anin . E[||x — 7},( )(Y)HQ]-

57 1L gesay
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Our Contribution

7§(k): Some results.

TPy = PWeT)(y)
= (Pyo---oP1oT)(y)

@ Each P;(y) need to be a second degree transform, i.e.,
Pi(y) = F1.y + F2ivi,
because, if each P; is a linear transform, i.e.,

then the accuracy of 7},(@ never will be better than 7.
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Our Contribution

E(k): Some results.

Scheme of solution of E(k)(y) = (Pgo---0oP1oT)(y)

D Compute compressor and de-compresor from the problem

9 2
min Ef|x — T (y)|2]-

ITCR Presentacién



Our Contribution

E(k): Some results.

Scheme of solution of E(k)(y) = (Pgo---0oP1oT)(y)

D Compute compressor and de-compresor from the problem

9 2
min Ef|x — T (y)|2]-

D Define tg = 7 (y) and compute P; from

rr71>in E[|x — P1 (tl)”g]
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Our Contribution

E(k): Some results.

Scheme of solution of E(k)(y) = (Pgo---0oP1oT)(y)

D Compute compressor and de-compresor from the problem

9 2
min Ef|x — T (y)|2]-

D Define tg = 7 (y) and compute P; from

rr71>in E[|x — P1 (tl)”g]

® Definet; = (P;0---0P107T)(y) and compute P; 1 from

min E[||x — Pi+1(ti)H%]7

Pit1

fori=1,...,k— 1.
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Our Contribution

7§(k): Some results.

@ The MSE of transform 7é(k) is less than transform 7T, for all k > 1.
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Our Contribution

7§(k): Some results.

@ The MSE of transform 7é(k) is less than transform 7T, for all k > 1.

@ If k> j, then the accuracy of transform T;k) is better than transform 7§(j).
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Our Contribution

7§(k): Some results.

Example 8 (Face reconstruction)

We consider a training set {x(k)7y(k)},1€5:2(? consisted of 1521 faces images.

k) ¢ R109824

o x{ were obtained using BiolD Face Database !Bio] consists of a set

{X(k)},lfflo of grayscale images of 23 different persons, X (¥) € R286%384 \yhere

x®) = vec(X(k)).

o To generate the corresponding noisy y(k) € R109824 (blurred image), we use
MATLAB command imfilter to create a blurred image y®), Finally,

y(k) = vec(Y(k)).
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T%): Some results.

Example 8 (Face reconstruction)

R 0l s
B 18 IS, B P9
B (0 I Lo 02
M I 0 9

(a) Source images.

ol B oGl BB B
B IR I8 B P2
B 0 K 8. 3
B e LN By

(b) Blurred images.




Our Contribution

7§(k): Some results.

Example 8 (Face reconstruction)

Reconstruction of Y, using r =30, T = T2 and P; = Fy ;y + ngiy2.

Observed image Y Source image BT
MSE= 1.127 x 102

GKLT2/T: 7Y T
MSE= 9.812 x 10" MSE= 1.75 x 10* MSE= 6.65 x 10~ '°
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Conclusions and Future Work

@ Conclusions and Future Work
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Conclusions and Future Work

Conclusions

@ We propose new transforms to solve the problem

. 2
min B[ - T(y)[3].
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Conclusions

@ We propose new transforms to solve the problem

. 2
meE[HX - T(y)lz]-

@ The new transforms allow compression, de-compression and filtering of
vector y.
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Conclusions and Future Work

Conclusions

@ We propose new transforms to solve the problem

. 2
meJE[HX - T(y)lz]-

@ The new transforms allow compression, de-compression and filtering of
vector y.

@ The proposed transforms improve the accuracy of known methods, i.e.,
BT, GKLT and GKLT2.

ITCR Presentacién



Conclusions and Future Work

Conclusions

@ The improvement in accuracy is achieved by special structures of the
proposed transforms which contain more parameters to optimize
compared to the known transforms.
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Conclusions and Future Work

Conclusions

@ The improvement in accuracy is achieved by special structures of the
proposed transforms which contain more parameters to optimize
compared to the known transforms.

Table: Matrices and parameters to optimize for each transform.

Transforms Matrices to optimize Number of parameters to optimize
BT D, C r(m+n)
GKLT F mn
GKLT2 By 2mn
Ti Dy, C1, Dy, Co ri(m+mn)+ra(m+q)
To D,Cq,Cs r(m+n+q)
k) (*) D, C, ko
T3 Fii1,F1,.,Fi g, Foy r(m )+ mlmk + 2 6:)
k) (*%) D, C1, Cy, koo
T3 Fi1,F1,.,F g, Fop rm+ntq) +mmk + 2, )

N T=BT (*™)T="Ts.



Conclusions and Future Work

Future Work

@ Develop a method to find an optimal random vector v in 71 and in 7a:

min min min  E[|x - T 2.
o min i Bl TR

C2eR™2%4 CyeR™*"

min min E[|x — 73 21.
veL2(Q,R?) DeR™" L 2)l2)
ClERTxn,CQERTXq
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Future Work

@ Develop a method to find an optimal random vector v in 71 and in 7a:

min min min  E[|x - T 2.
o min i Bl TR

C2eR™2%4 CyeR™*"

min min E[|x — 73 21.
veL2(Q,R?) DeR™" L 2)l2)
ClERTxn,CQERTXq

@ In transforms 77 and 72, what happen when dimension ¢ of vector v
takes to infinity?
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Future Work

@ Use the proposed transforms in a distributed system scenario.

Y1 C, u; |
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Publications

@ A. Torokhti and P. Soto-Quiros, “Generalized Brillinger-Like Transforms,” in IEEE
Signal Processing Letters, vol. 23, no. 6, pp. 843-847, June 2016.

o A. Torokthi, S. Miklavcic and P. Soto-Quiros, “Distributed Systems:
Identification, Optimization and Simulations”, in International Journal of
Electronics and Electrical Engineering, vol. 4, no. 4, pp. 322-327, 2016.

@ A. Torokhti and P. Soto-Quiros, “Optimal Transforms of Random Vectors: the
Case of Successive Optimizations” (Submitted)
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